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1 Introduction
These are notes on the Pound-Drever-Hall technique for doing interferometry with a Fabry-Perot cav-
ity. They are intended as introductory material to supplement the published literature for members of
the Thermal Noise Interferometer group. Understanding the Pound-Drever-Hall technique is essential
to understanding the workings of the Thermal Noise Interferometer (TNI), as well as LIGO. These
notes include a review of the fundamentals of the technique as well as some quantitative predictions
about sensitivity and noise.

1.1 Motivation
The technique was invented for stabilizing the frequency of a laser by locking it to a Fabry-Perot
reference cavity, and that is still its primary use. It was invented by Ron Drever, based on an earlier
microwave technique invented by R. V. Pound, and much of the implementation was worked out at
JILA by Jan Hall’s group. Although laser stabilization is its primary use, the technique can also be
used the other way around: to lock a cavity to a laser. When you do this, you can measure small
changes in the length of the cavity with extremely good precision, which is important if you want to
do gravitational wave astronomy.

In our case, we want to measure the small changes in the length of a cavity caused by thermal noise
to see how it will affect a gravitational wave antenna. We will use the Pound-Drever-Hall technique
to measure this length noise. Since we need a very stable laser as a reference, we will also use the
Pound-Drever-Hall technique for stabilizing the frequency of our laser.

1.2 Background
In writing this document I am assuming that the reader is familiar with Fabry-Perot cavities, but not
necessarily with the Pound-Drever-Hall technique. I am also assuming an elementary knowledge of
feedback control. Most physicists have no formal training in feedback control theory, but the subject
is taught in the standard undergraduate electrical engineering curriculum. There are a number of very
accessible textbooks on control theory, two of which are Friedland [1] and Franklin, Powell, and
Emami-Naeni [2]. The first chapter in Friedland provides enough background to follow these notes.

Some excellent primary sources on the Pound-Drever-Hall technique are Tim Day’s thesis [3],
Ron Drever’s original paper [4], and the standard analysis of the theory by Bjorklund, et al. [5]. A
good collection of background material relevant to gravitational wave detection can be found in Peter
Saulson’s book [6]. Other references abound. The technique is also taught in the undergraduate optics
lab here at Caltech, and the class notes for that lab are also a good source of information.
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Figure 1: The basic layout for locking a cavity to a laser. Solid lines are optical paths, and dashed
lines are signal paths. The signal going to the far mirror of the cavity controls its position.

2 A conceptual model
Fig. 1 shows a basic Pound-Drever-Hall setup. This arrangement is for locking a cavity to a laser, and
it is the setup you would use to measure the length noise in the cavity.1 You send the beam into the
cavity; a photodetector looks at the reflected beam; and its output goes to an actuator that controls the
length of the cavity. If you have set up the feedback correctly, the system will automatically adjust
the length of the cavity until the light is resonant and then hold it there. The feedback circuit will
compensate for any disturbance (within reason) that tries to bump the system out of resonance. If you
keep a record of how much force the feedback circuit supplies, you have a measurement of the noise
in the cavity.

Setting up the right kind of feedback is a little tricky. The system has to have some way of telling
which way it should push to bring the system back on resonance. It can’t tell just by looking at the

1Locking the laser to the cavity follows essentially the same design, the only difference being that you would feed
back to the laser, rather than the cavity.
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intensity, since it is the same on either side of resonance. The system needs to be able to tell which
way the intensity will go if it pushes one way or another. It has to be able to sample the derivative of
the intensity. You could try moving the mirror back and forth to see which way makes the intensity
go down, but it is usually easier to adjust the laser.

In Fig. 1, the Pockel’s cell modulates the phase of the laser beam, and the reflected light is com-
pared with the modulation signal (LO). For a conceptual understanding, it is more useful to imagine
that you are modulating the laser’s frequency.

If you are above resonance, increasing the laser’s frequency increases the power in the reflected
beam. Below resonance, increasing the laser’s frequency decreases the reflected power. If you mod-
ulate the system, you can tell which side of resonance you are on by whether the reflected power is
varying in phase or out of phase with the modulation. (See Fig. 2.)

Figure 2: The reflected light intensity from a Fabry-Perot cavity as a function of laser frequency, near
resonance. If you change the laser frequency, you can tell which side of resonance you are on by how
the reflected power changes.

The mixer compares the modulation signal (generated by LO in Fig. 1) with the output of the
photodetector, extracting the part that is at the same frequency as the modulation signal. (The mixer’s
output is just the product of its inputs.) The sign of the mixer’s output is different on either side of
resonance, and it is zero when the system is exactly on resonance. This is just what you want for
a feedback control signal. In control theory, this feedback signal is called the error signal and is
typically designated . Sending this error signal to the actuator on the mirror completes the feedback
loop and locks the system on resonance.

You may want some amplification and possibly a change of sign (to make sure the feedback is
negative), so you can put an amplifier between the mixer and the actuator. That’s what the “Servo
Amp” in Fig. 1 is for. You can tell how much noise is in the cavity by monitoring the error signal.

This conceptual model is really only good when the dithering the laser frequency slowly. If you
dither the frequency too fast, the light resonating inside the cavity won’t have time to completely
build up or settle down, and the output will not follow the curve shown in Fig. 2. Also, although it
is possible to dither the frequency of a laser, it is usually much easier and much more desirable to
modulate its phase. In any practical implementation of this technique, you want to use a very fast
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phase modulation, and you have to resort to a quantitative model to understand what is going on. The
rest of these notes are devoted to this quantitative model.

3 A quantitative model

3.1 The incident beam
A simple laser beam will have an electric field given by . I talked about dithering the frequency
of this beam in the last section, but in practice it is easier to dither the phase. The results are essentially
the same. The Pockels cell shown in Fig. 1 accomplishes this phase dither. After the beam has passed
through this Pockels cell, its electric field is2

.

I have written it in this form to show that there are actually three different beams incident on the
cavity: a carrier, with frequency , and two sidebands with frequencies . Here,
is the phase modulation frequency, and is known as the modulation depth. If is the total power
in the beam, then the power in the carrier is

,

and the power in each sideband is

.

When the modulation depth is small ( ), almost all of the power is in the carrier and the first
order sidebands.

3.2 The reflected beam and the error signal
If you send a simple, monochromatic beam ( ) into a Fabry-Perot cavity, some of it will get
reflected. The properties of the reflected beam are straightforward: It must have the same frequency
as the incident beam, and its amplitude must be proportional to the incident beam’s amplitude. This
suggests that the reflected beam would be given by , and if you do a careful calculation,
that’s exactly what you get. Most elementary optics books will get you started on this derivation, so I
will not reproduce it here. (See Appendix A for the general formula for and some useful results.)

2The reader who doesn’t like Bessel functions will find that the small angle expansion,
works just about as well.
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There may be some phase shift on reflection, but we can take that into account by letting the reflection
coefficient be complex.

The reflection coefficient depends on properties of both the beam and the cavity. For a symmetric
cavity with no losses, it is

, (1)

where is the amplitude reflection coefficient of each mirror, and is the phase the light picks up
in one round trip inside the cavity. The general formula for is , where is the laser
frequency, and is the cavity length. You can get a better feel for the physics by writing it in terms
of the laser frequency in cavity free spectral ranges,

,

or the round trip optical path in the cavity in wavelengths of light,

.

The laser frequency and the cavity length are on equal footings. The reflection coefficient is periodic
in both, following an Airy function, and it vanishes when either the laser frequency is an integer
multiple of free spectral ranges, or the round trip optical path is an integer number of wavelengths. The
two conditions are the same, of course, but sometimes you want to think in terms of laser frequency,
and sometimes you want to think in terms of cavity length.

To calculate the reflected beam when there are several incident beams, you just multiply each of
the incident beams by the reflection coefficient at the appropriate frequency. In the Pound-Drever-Hall
setup, where we have a carrier and two sidebands, the reflected beam is

.

(I have written in terms of the laser frequency for convenience.) What we really want is
the power in the reflected beam, since that is what we measure with the photodetector. This is just

, or after some algebra

terms .

The mixer pulls out the term that is proportional to , so the error signal is

.

6



0.9 0.95 1.05 1.1

-1

-0.5

0.5

1

Figure 3: The Pound-Drever-Hall error signal, versus . Here, the modulation frequency
is 4% of a free spectral range, and the cavity finesse is about .

Fig. 3 shows a plot of this error signal for a lossless cavity with identical mirrors. Note that the
error signal crosses zero if any of the beams (the carrier or either of the sidebands) resonates in the
cavity. However, the sign of the error signal’s slope is opposite for the carrier and the sidebands. If
you have made a mistake and wired your system up with positive feedback, then it is possible to lock
to the sidebands instead of the carrier. This provides a good test to see if you’ve got the polarity of
your servo right, since you can usually tell a sideband from a carrier just by looking.

3.3 Approximations near resonance
Let’s consider a lossless cavity with identical, highly reflective mirrors. Then Eqn. 1 gives the reflec-
tion coefficient. If the carrier is near resonance, and the modulation frequency is high enough that
the sidebands are not, we can assume that the sidebands are totally reflected, . This
gives

.

I have neglected the reflected carrier, which will be proportional to
. However, I do want to retain terms to first order in .

On resonance, is a multiple of . Near resonance,

,

where is some small deviation in the cavity length from resonance, and is an integer. If this
deviation is only a small fraction of a wavelength (Yes, we really are sensitive to such small changes!),
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we can write the reflection coefficient in terms of and approximate it by

.

Here is the finesse of the cavity. The reflected power near resonance is then

.

The error signal is now proportional to the change in the length of the cavity. We have entered the
linear regime.

We will need the slope of the error signal in the next section, so let’s give it a name.

(2)

4 Fundamental limits

4.1 Shot noise limited resolution
We use the error signal to measure the cavity noise by the relation

. Expressed in terms of amplitude spectral densities, this is3

.

Any noise in the error signal itself will be indistinguishable from noise in the cavity. There is a
fundamental limit to how quiet the error signal can be, even in the absence of length or frequency
fluctuations, due to the quantum nature of light. The energy that falls on the photodiode comes in a
pitter patter of photons, rather than a smooth flow, and the resulting noise is called shot noise.

On resonance, the reflected power, and hence the light power falling on the photodiode, will be
. The shot noise in this signal has a flat spectrum with spectral density of [6]

.

Dividing the error signal spectrum by gives us the equivalent length noise,4

3The minus sign is essentially irrelevant for a spectrum.
4This is not the shot noise limit relevant to LIGO. There, they are concerned with the finite bandwidth of the cavity,

which makes the shot noise limited length resolution turn up at high frequencies, instead of having a flat spectrum. The
frequency at which this happens is so high for our shorter cavities that we can ignore it.
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. (3)

This is the limit to which you can resolve the length of the cavity. The same mechanism limits
your ability to measure the frequency of the laser.

.

Since you can’t resolve the frequency any better than this, you can’t get it any more stable than
this by using feedback to control the laser. Note that the shot noise limit does not explicitly depend
on the power in the sidebands, as you might expect. It only depends on the power in the carrier.

It’s worth putting in some numbers to get a feel for these limits. One cavity that we use in the TNI
(the reference cavity for our pre-stabilized laser stage) is long and has a finesse of . Our
laser operates at with a wavelength of . (Both of these are commercial items.) The
best resolution we could possible hope to achieve, were we to try and measure the length noise in this
cavity with a perfect laser, would be

.

If the cavity had no length noise and we were to lock the laser to it, the best frequency stability we
could get would be

.

4.2 The sensitivity theorem
Mizuno has estimated the quantum limited sensitivity of any interferometer from very general con-
siderations, and his result is known as the sensitivity theorem [7]. Since shot noise is the quantum
mechanism that limits the sensitivity of a Fabry-Perot cavity, our shot noise limit ought to give the
same limit as Mizuno’s sensitivity theorem.

The sensitivity theorem is usually stated in terms of strain, . According to this theorem,
quantum effects must limit your strain sensitivity to

,

where bandwidth of the interferometer, and is the energy stored in the light circulating in
the interferometer. The bandwidth of a Fabry-Perot cavity is half its linewidth, .
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The energy stored in a Fabry-Perot cavity on resonance is the circulating power [8]
multiplied by the time it takes for light to circulate once, .

If we write the shot noise limit (Eqn. 3) in terms of these parameters, we get a strain resolution
limit of

,

which is consistent with the sensitivity theorem.

5 Technical considerations

5.1 Getting close to the shot noise limit
There are lots of other kinds of noise, of course, but most of these can be suppressed by feedback.
Tim Day has done a nice analysis of technical noise sources in laser frequency stabilization [3], and
the results are easy enough to adapt to cavity locking. The closed loop length noise in the cavity, in
terms of the other noise sources, is

,

where is the free running length noise of the cavity, is the voltage noise in the servo
amplifier, and is the voltage noise in the photodetector. The terms , , and are the gains
of the actuator, the servo amp, and the photodetector, respectively. The units of are , has
units of , and is unitless. The photodetector gain is just the slope of the error signal
multiplied by the voltage response of the photodetector.

If you make the servo gain very large, , the noise spectrum limits out to

.

The closed loop cavity noise is dominated by the noise in the photodetector. If the noise in the
photodetector is mainly shot noise, then this reduces to the limit derived above.

If you want to get close to the shot noise limit, you need to concentrate on the photodetector (to
reduce ). High servo gain takes care of all the other noise sources. When you first look at it, it
seems like magic that a high gain servo will suppress its own noise, but that’s really the way it works!

5.2 Maximizing the slope of the error signal
If you want to minimize the closed loop noise, you want to maximize . This won’t really affect the
shot noise limit, but it will help suppress technical noise sources. depends on the cavity finesse,
the laser wavelength, and the power in the sidebands and the carrier. Experimental details usually
restrict your finesse and wavelength choices, but you often have quite a bit of freedom in adjusting
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the sideband power. The question I want to address in this section is this: How does (and hence the
closed loop noise) depend on the sideband power?

is proportional to the square root of the product of the sideband and carrier power. (See Eqn. 2.)
This has a very simple form when , i.e. when negligible power goes into the higher
order sidebands.

A plot of against traces out the top half of a circle, with a maximum at . (See
Fig. 4.) It is useful to express the power in the sidebands relative to the power in the carrier, and this
gives

is maximized when the power in each sideband is half the power in the carrier, and this maximum
is fairly broad.

D

Ps/Pc

0 0.5 1.0

Figure 4: An approximate plot of , the slope of the error signal near resonance, versus . The
optimum value is at , and the maximum is very broad.

If you want to be more careful in this analysis, write in terms of the Bessel functions of the
modulation depth and maximize it. You’ll find the optimum modulation depth to be ,
and you’ll come up with essentially the same answer as with the simple estimate: ,

, and .
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5.3 Noise in other parameters
The only two things the error signal is sensitive to are the length of the cavity and the frequency of the
laser, and the sensitivity to each of these is comparable. It is not possible, in principle, to distinguish
noise in the laser from noise in the cavity by just looking at the error signal. There are tricks to get
around this, however. For example, you can split the beam and send it into two independent cavities.
Any noise that is common to both will probably be in the laser, and you can eliminate it by doing a
differential measurement on the two error signals. This is the sort of arrangement we will have in the
TNI.

The system is not sensitive (to first order) to fluctuations in the power in the beam, the response
of the photodiode, the modulation depth, and the relative phase of the driving and reference signals.
The system will be sensitive to fluctuations in the sideband power near the modulation frequency, but
most such noise is negligible at high frequencies. You don’t have to worry about it if you choose your
modulation frequency high enough. This insensitivity to a wide range of noise sources is characteristic
of nulled lock-in detection, which is the general term for any modulatedmeasurement operated around
a zero output. If you want to get good at low noise measurements, the general theory of nulled lock-in
detection is worth exploring!

A The reflection coefficient
The reflected beam is the coherent sum of two different beams: the promptly reflected beam, off the
first mirror, and the leakage beam, from the cavity. It is not too hard, provided you keep track of your
phases,5 to show that the total reflected beam is

,

where is the laser frequency, and is the cavity free spectral range. The terms and
are the amplitude reflection coefficients for the front and back mirrors, respectively, and is the

transmission coefficient for the front mirror.
The amplitude of follows an Airy function with respect to , and its properties are explored in

any good undergraduate optics book. However, it is the phase of that is important for understanding
Pound-Drever-Hall locking, and that is not generally treated in textbooks. (The only treatment I am
aware of right now is a partial one in Siegman [8].) Fortunately, there is a very simple way to think
about the phase of .

The reflection coefficient traces out a circle in the complex plane with respect to the parameter .
(See Fig. 5.) The amplitude of is symmetric around resonance, but its phase is different depending
on which side of resonance you are on. This phase is what the Pound-Drever-Hall technique samples

5There is some subtlety here! Physicists do it one way, and engineers apparently do it another. I am using the
physicists’ convention: real transmission and reflection coefficients, with a sign difference between reflecting off a surface
from the right or the left.
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Figure 5: The reflection coefficient in the complex plane. As the laser frequency (or equivalently,
the cavity length) increases, traces out a circle (counterclockwise). Most of the time, is near
the real axis at the left edge of the circle. Only near resonance does the imaginary part of become
appreciable. Exactly on resonance, is real, only this time it lies on the right edge of the circle.

by beating the reflected carrier with the sidebands. This is the real story behind the conceptual model
illustrated in Fig. 2.

The leakage beam is generally out of phase with the promptly reflected beam on resonance,
so the interference between the two is destructive. If the leakage beam exactly cancels the promptly
reflected beam, then the cavity is said to be impedance matched. If the leakage beam is too weak to
entirely cancel the promptly reflected beam, the cavity is called undercoupled. If the leakage beam is
much stronger than the promptly reflected beam, the cavity is said to be overcoupled. LIGO’s cavities
are strongly overcoupled, which allows them to get a reflected beam from their Fabry-Perot cavities
even when they are on resonance. This is essential if you want to use the cavities in the arms of a
Michelson interferometer.
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